Create the file tree and data files for the present application.
Source:R/build.R
build_app_directory.Rd
Create the file tree and data files for the present application.
Usage
build_app_directory(app_df = construct_app_metadata(), open = TRUE)
See also
Other cli:
build_base_directory()
,
get_app_info()
,
open_app()
,
render_app()
,
render_cover()
,
render_cv_as_html()
,
render_resume()
,
update_app_info()
Examples
# Complete end-to-end example (build -> (edit) -> render -> check) ----------
in_tmp_env({
message("1. Building project directory...")
build_base_directory()
data(example_job_metadata)
app_df <- construct_app_metadata(app_info = example_job_metadata)
message("")
message("2. Building application...")
build_app_directory(app_df = app_df, open = FALSE)
message("")
message("3. Rendering application...")
render_app(cover = FALSE, email = FALSE)
message("")
message("4. Checking keywords...")
report_df <- check_skills()
print(report_df)
})
#> 1. Building project directory...
#>
#> ── Setting project paths ───────────────────────────────────────────────────────
#>
#> Your current path is: /tmp/RtmpxhNRJk/
#> Set your desired project path relative to your current path:
#>
#> You entered the path: /tmp/RtmpxhNRJk/
#>
#> Setting your project root to: /tmp/RtmpxhNRJk/
#> Created file .here in /tmp/RtmpxhNRJk . Please start a new R session in the new project directory.
#> ✔ Writing file: .Rprofile
#> ✔ Writing file: mycv.Rproj
#>
#> ℹ Writing to: ../../../../../../../tmp/RtmpxhNRJk
#>
#> ── Creating directory tree ─────────────────────────────────────────────────────
#> ! Folder already exists: . (skipping)
#> ✔ Creating folder: R
#> ✔ Creating folder: R/input
#> ✔ Creating folder: R/output
#> ✔ Creating folder: R/applications
#>
#> ── Writing skeleton data files ─────────────────────────────────────────────────
#> ✔ Writing file: R/input/resume_data.xlsx
#> ✔ Writing file: R/input/cover_data.xlsx
#> ✔ Writing file: R/input/job_metadata.yml
#>
#> ── Writing resume-building notebooks ───────────────────────────────────────────
#> ✔ Writing file: resume.Rmd
#> ✔ Writing file: cv.Rmd
#>
#> 2. Building application...
#>
#> ℹ Writing to: ../../../../../../../tmp/RtmpxhNRJk/R/applications/2024-07-data-science/2024-09-28-01-company-name-data-scientist-AB
#>
#> ── Creating directory tree ─────────────────────────────────────────────────────
#> ✔ Creating folder: input
#> ✔ Creating folder: output
#>
#> ── Copying base data files into directory ──────────────────────────────────────
#> ✔ Writing file: input/resume_data_AB.xlsx
#> ✔ Writing file: input/cover_data_AB.xlsx
#>
#> ── Writing application metadata ────────────────────────────────────────────────
#> ✔ Writing file: metadata_AB.yml
#> ✔ Writing file: ../log.rds
#>
#> ── Downloading job posting and building a skill report ─────────────────────────
#> ✔ Writing file: input/posting_AB.txt
#>
#> ── Keyword check: Posting vs job terms list ────────────────────────────────────
#> ✔ Writing file: output/keyword_counts_AB.csv
#> # A tibble: 1 × 2
#> term matches
#> <chr> <dbl>
#> 1 Disabled 4
#>
#> ── Keyword check: Posting vs data terms list ───────────────────────────────────
#> ✔ Writing file: output/skill_counts_posting_AB.csv
#> # A tibble: 55 × 2
#> term matches
#> <chr> <dbl>
#> 1 Data Science 73
#> 2 Data Analysis 15
#> 3 UX 1
#> 4 Statistics 29
#> 5 Cloud Computing 4
#> 6 Insights 10
#> 7 Computer Science 7
#> 8 Survey Data 1
#> 9 Algorithms 4
#> 10 Unstructured Data 2
#> 11 Domain Knowledge 3
#> 12 Mathematics 3
#> 13 Data-Driven 3
#> 14 Statistical Knowledge 1
#> 15 Data Visualization 3
#> 16 Machine Learning 8
#> 17 C 8
#> 18 Classification 3
#> 19 Data Mining 4
#> 20 Statistical Learning 3
#> 21 Data Collection 1
#> 22 Big Data 13
#> 23 Exploratory Data Analysis 2
#> 24 Data Management 2
#> 25 Data Cleaning 1
#> 26 Predictive Models 3
#> 27 Models 2
#> 28 Data-Driven Decisions 1
#> 29 Statistical Analysis 2
#> 30 Data Preprocessing 1
#> 31 Feature Engineering 1
#> 32 Model Selection 1
#> 33 Implementation 1
#> 34 Analytical Techniques 1
#> 35 Analytical 1
#> 36 Large Datasets 2
#> 37 Non-Technical Audiences 1
#> 38 Critical Thinking 1
#> 39 Data-Driven Decision-Making 1
#> 40 Data Analytics 1
#> 41 Cloud Services 1
#> 42 Python 1
#> 43 R 2
#> 44 Data Engineering 1
#> 45 HTML 4
#> 46 Statistical Modeling 1
#> 47 Causal Inference 1
#> 48 Collaboration 1
#> 49 Signal Processing 1
#> 50 Spark 1
#> 51 Spark SQL 1
#> 52 Data Ethics 1
#> 53 ETL 1
#> 54 ELT 1
#> 55 Developers 1
#>
#> ✔ Opening: .
#>
#> 3. Rendering application...
#>
#> ── Building resume.txt ─────────────────────────────────────────────────────────
#> ✔ Writing file: output/resume_yourname_AB.txt
#>
#> ── Building resume.pdf ─────────────────────────────────────────────────────────
#> ✔ Writing file: output/resume_yourname_AB.pdf
#> ✔ All fields are up-to-date. Synchronizing metadata and log...
#>
#> ! File already exists: metadata_AB.yml (overwriting)
#> ! File already exists: ../log.rds (updating entry for 'AB')
#> ! Package fontspec Error:
#> (fontspec) The font "Helvetica Neue" cannot be found; this
#> (fontspec) may be but usually is not a fontspec bug. Either
#> (fontspec) there is a typo in the font name/file, the font is
#> (fontspec) not installed (correctly), or there is a bug in
#> (fontspec) the underlying font loading engine
#> (fontspec) (XeTeX/luaotfload).
#> Error: LaTeX failed to compile /tmp/RtmpxhNRJk//./R/applications/2024-07-data-science/2024-09-28-01-company-name-data-scientist-AB/output/resume_yourname_AB.tex. See https://yihui.org/tinytex/r/#debugging for debugging tips. See resume_yourname_AB.log for more info.